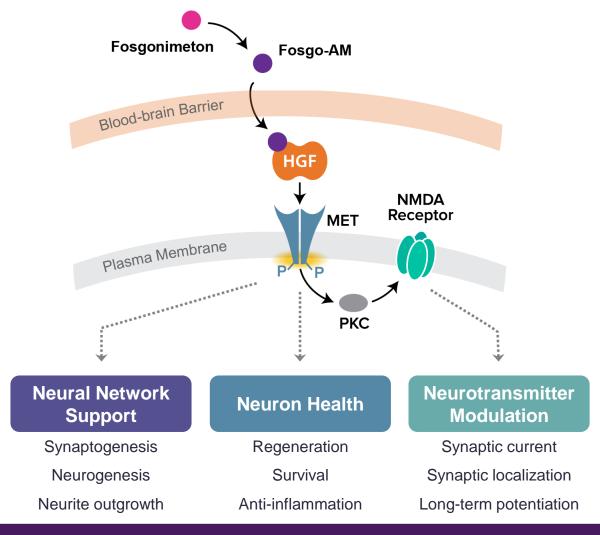
Study Design and Participant Characteristics of a Phase 2 Trial of Fosgonimeton, a Novel Treatment for Mild to Moderate Alzheimer's Disease

Hans J Moebius¹, Kevin Church¹, Kai-Bin Ooi¹, Joyce Maalouf¹, William Walker¹, Philippe L'Hostis², Charles Bernick³, Sam Dickson⁴, Suzanne Hendrix⁴, Xue Hua¹

¹Athira Pharma, Inc., Bothell, WA, USA; ²Core Lab, Drug Evaluation and Pharmacology Research, Biotrial, Rennes, France; ³Department of Neurology, University of Washington, Seattle, WA, USA; ⁴Pentara Corporation, Millcreek, UT, USA

Disclosures

- Hans J. Moebius, Kevin Church, Kai-Bin Ooi, Joyce Maalouf, and William Walker are all employees
 of Athira Pharma, Inc., with salary and stock compensation
- Xue Hua was an employee of Athira Pharma, Inc.
- Charles Bernick is a principal investigator on Athira clinical studies and is a clinical professor at University of Washington, Department of Neurology
- Sam Dickson and Suzanne Hendrix are both employees of Pentara Corporation



Fosgonimeton (ATH-1017) is a positive modulator of the

HGF/MET neurotrophic system

Fosgonimeton:

- Is administered via once-daily subcutaneous injection
- Is a small-molecule prodrug that is immediately converted to an active metabolite in plasma
- Crosses the blood-brain barrier
- Positively modulates HGF/MET

Multimodal, protective, and regenerative

Athira's accelerated approach to fosgonimeton development in AD

Long term toxicology

- Long term GMP tox trials started early and at risk
- Completion to coincide with and allow start of 6-month double blind trials

Phase 1

- Larger than usual
- Included a cohort of subjects with AD
- Included functional biomarkers qEEG and ERP P300
- Confirmed dose range

Phase 2 and 3

- Parallel initiation of Phase 2 and 3 in mild to moderate subjects with AD
- 6-month double blind studies
- · Validated endpoints

- Comparable patient demographics and secondary endpoints
- Phase 2 functions as an interim analysis for Phase 3 without statistical penalty or operational complexity

Open Label Extension

- Offered 6-month open label extension to both Phase 2 and 3 subjects
- Subjects and investigators remain blinded to prior treatment assignment

Differential requirements for AD diagnosis early vs later

A/T/N Classification System¹

- Aß biomarker:
 - Amyloid PET OR
 - CST Aß₄₂
- <u>T</u>au pathology biomarker
 - CSF p-tauOR
 - Tau PET
- <u>N</u>eurodegeneration biomarker
 - CSF t-tau or
 - FDG-PET OR
 - MRI

Resource intensive & Low accessibility

Revised National Institute on Aging-Alzheimer's Association criteria²

- Probable AD dementia
 - Meets core criteria for dementia
 - Insidious onset
 - Clear history of worsening cognition
 - Most prominent cognitive deficits are in one of the following:
 - Amnestic presentation (most common)
 - Language presentation
 - Visuospatial presentation
 - o Executive dysfunction
 - No evidence of:
 - Substantial cerebrovascular disease
 - Prominent features of other dementias
 - Evidence for other neurological disease
 - Non-neurological comorbidity that could affect cognition
 - Use of medication that could affect cognition

^{1.} Jack CR, et al. Neurology. 2016; 87(5): 539-547.

Accessible

Affordable

Real life

^{2.} McKhann GM, et al. Alzheimers Dement. 2011; 7(3):263-269.

Why first address mild to moderate AD instead of pre-dementia?

Medical need:

- The point of most accelerated disease progression^{1,2}
- Currently marketed drugs in mild to moderate space have only modest effects³
- Higher financial burden than pre-dementia⁴

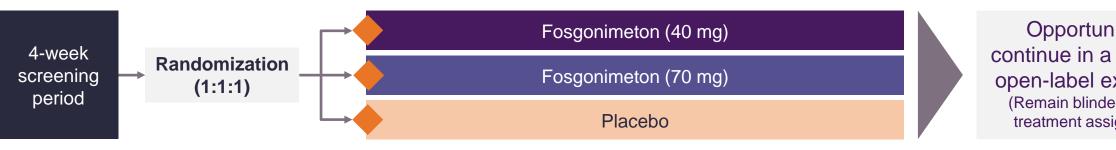
Reduced development risk:

- Clinical, syndromal diagnosis is possible⁵
- Increased likelihood of tangible placebo decline
 - Established regulatory path (AChEis, memantine)

^{1.} Ower AK, et al. Eur J Epidemiol. 2018;33:657–666.

Caroli A, et al. Neurobiol Aging. 2010;31(8):1263-1274

Fink HA, et al. *Ann Intern Med*. 2020;172(10):656–668


Cerejeira J, et al., Front Neurol. 2012; 3:73.

de Aguino CH, et al. Front Neurol, 2021:12:694329.

Phase 2 ACT-AD: mild to moderate Alzheimer's

26-week double-blind duration

Opportunity to continue in a 6-month open-label extension (Remain blinded to prior treatment assignment)

Final enrollment: 77

Treatment: 40 mg/d or 70 mg/d fosgonimeton or placebo, daily subcutaneous injection

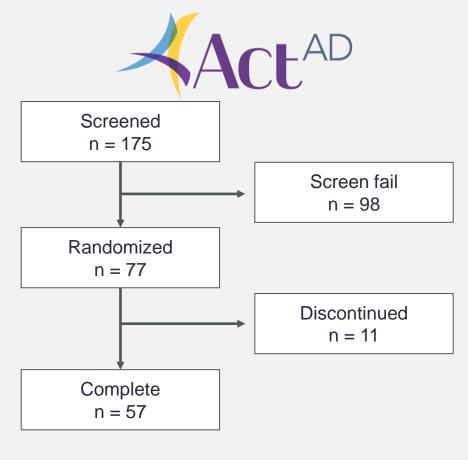
Age range: 55-85 years

Dual severity criteria for inclusion: MMSE 14-24, CDR 1 and 2

Phase 2 ACT-AD: inclusion and exclusion criteria

Key inclusion criteria

- Aged 55–85 years
- Subjects with mild to moderate AD dementia:
 - MMSE score of 14 to 24 inclusive at screening
 - CDR scale global score of 1 or 2 at screening
- Clinical diagnosis of <u>probable</u> AD dementia with documented decline within 12 months before screening, by the revised NIA-AA criteria¹
 - Onset of symptoms at least 12 months prior to screening
 - MRI or CT within 12 months before screening, with findings that are consistent with the diagnosis of dementia due to AD, without any other significant comorbid CNS pathologies
- Treatment-naïve OR receiving stable AChEi treatment

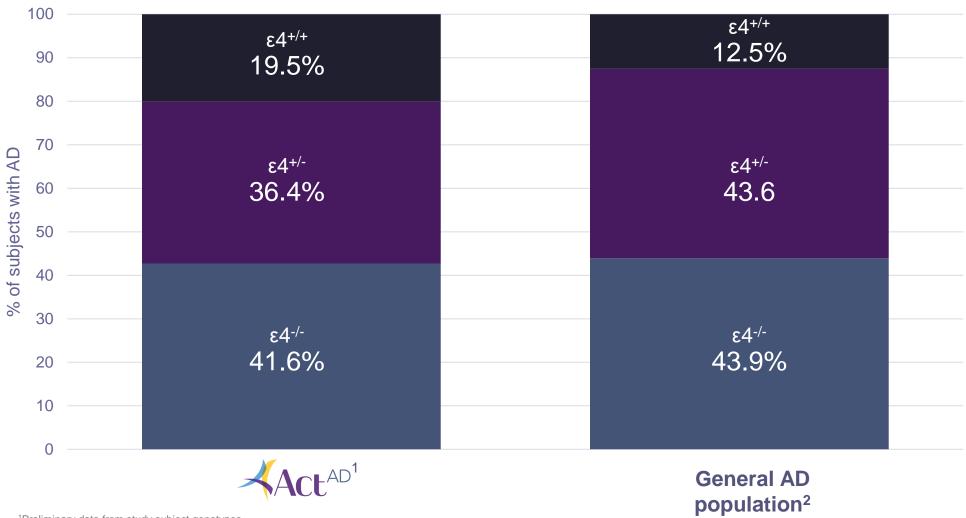

Key exclusion criteria

- History of significant neurologic disease
- Atypical variant presentation of AD
- Diagnosis with current symptoms of severe major depressive disorder and/or significant suicide risk
- History of psychosis within 2 years of screening
- Clinically significant cardiac abnormalities
- Hepatic impairment or renal insufficiency
- Memantine treatment

Aβ and tau agnostic approach

Phase 2 ACT-AD: current patient disposition

Enrollment: N = 77


Phase 2 ACT-AD: baseline demographics

Disease severity ^a	Mild (n = 31)	Moderate (n = 46)	Overall ^b (N = 77)
Age at informed consent (years); mean (SD)	73.1 ± 7.0	70.5 ± 7.2	71.4 ± 7.3
Body mass index (kg/m²), mean (SD)	25.8 ± 3.9	25.3 ± 3.5	25.4 ± 3.7
Sex, n (%)			
Female	13 (41.9%)	26 (56.5%)	39 (50.6%)
Male	18 (58.1%)	20 (43.5%)	38 (49.4%)
Years of education, mean (SD)	15.5 ± 2.8	14.5 ± 2.8	14.9 ± 2.8
Baseline MMSE, mean (SD)	21.8 ± 1.9	17.5 ± 1.6	19.3 ± 2.7
Currently taking an AChEi, n (%)	16 (51.6%)	30 (65.2%)	46 (59.7%)

Phase 2 ACT-AD: APOE4 allele frequency

¹Preliminary data from study subject genotypes.

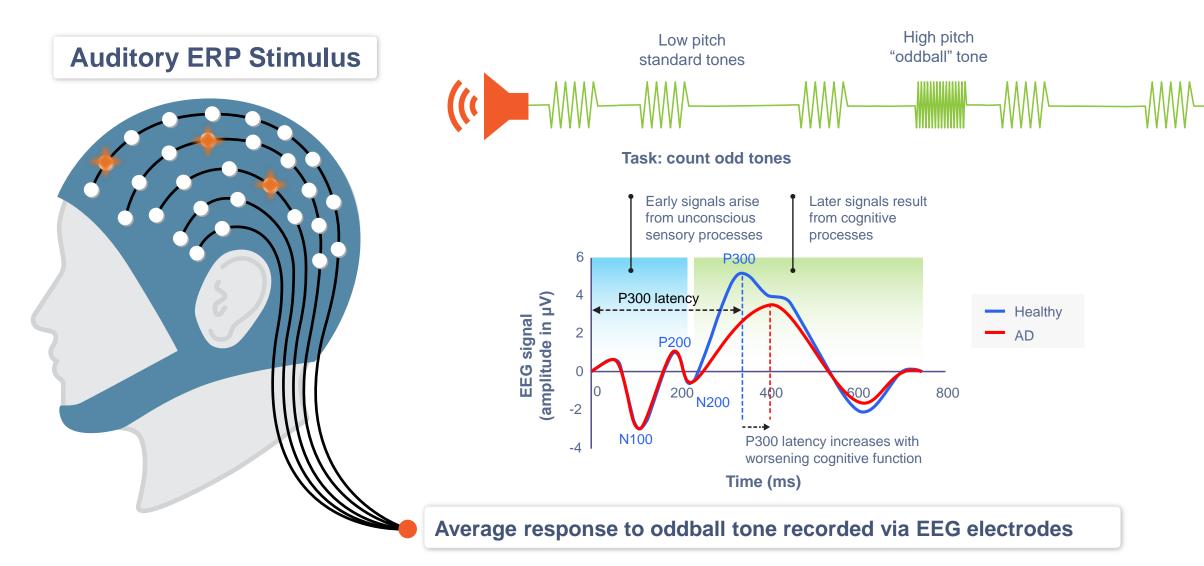
²Calculated from APOε4 genotypes reported in individuals diagnosed with Alzheimer's disease at the initial visit in the National Alzheimer's Coordinating Center database. Total N = 11,663. Data query made March 1, 2022. AD, Alzheimer's disease; APO, apolipoprotein.

Phase 2 ACT-AD endpoints

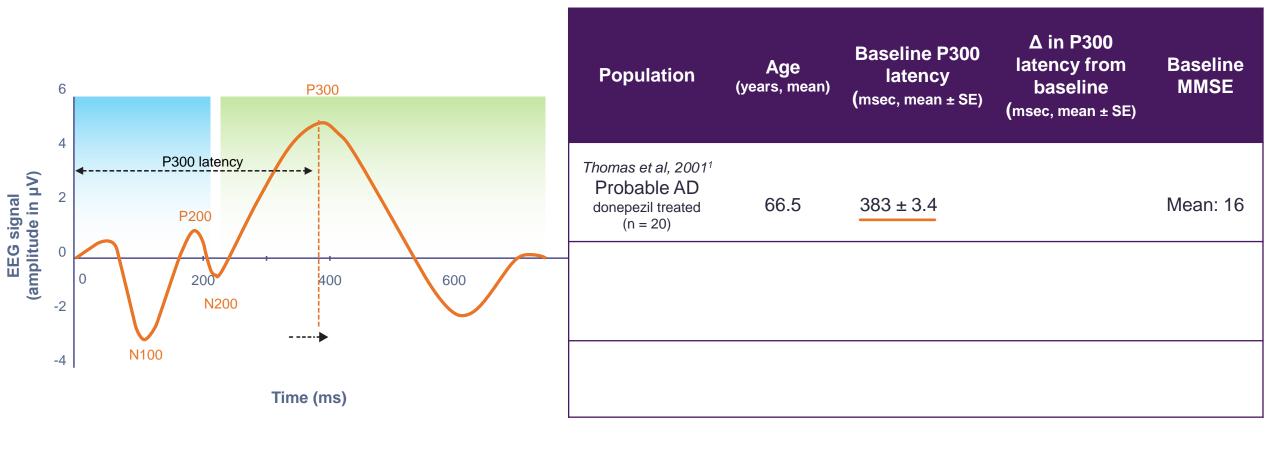
Primary

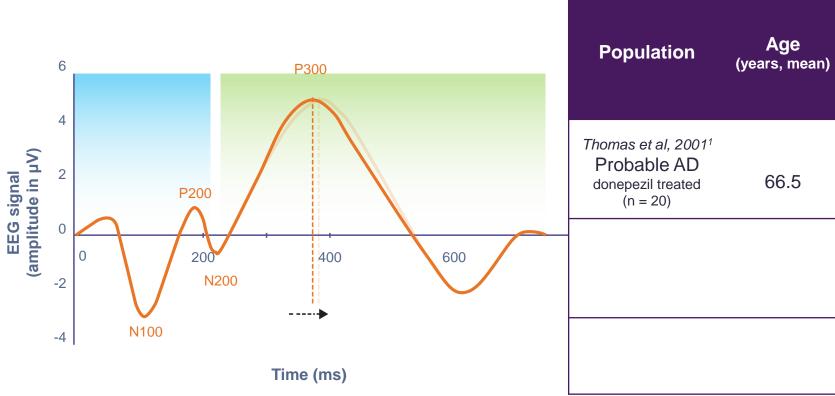
- Safety
- **ERP P300 latency**

Secondary


- Cognition: ADAS-Cog₁₁
- Global clinical change: ADCS CGIC - Clinician
- Function: ADCS-ADL₂₃
- Plasma PK

Exploratory


- **COWAT**
- NPI
- ZBI
- **RUD-lite**
- EQ-5D-5L
- qEEG spectral power


Measuring ERP P300 latency

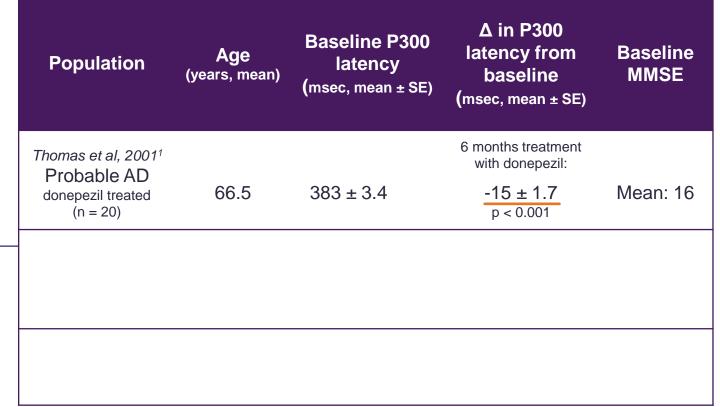
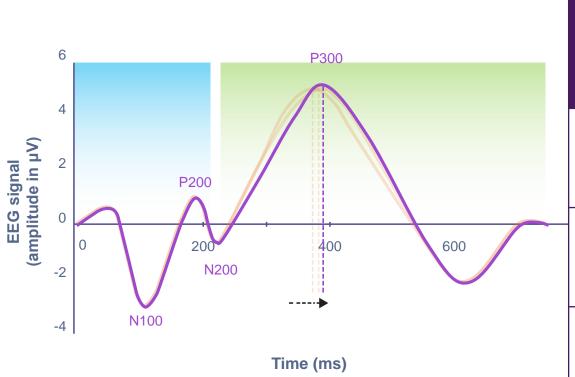



Diagram is illustrative and does not represent actual EEG data. Source: Athira Pharma, Inc.

AD, Alzheimer's disease; EEG, electroencephalogram; ERP, event-related potential; MMRM, mixed model for repeated measures; MMSE, Mini-Mental State Examination; SE, standard error.

1. Thomas A, et al. Clinical Neuropharmacol. 2001;1:31-42.

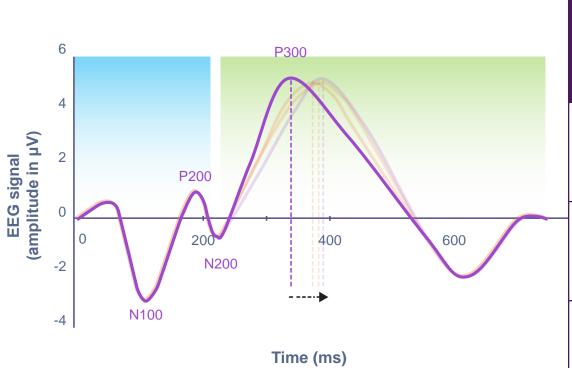

Population	Age (years, mean)	Baseline P300 latency (msec, mean ± SE)	Δ in P300 latency from baseline (msec, mean ± SE)	Baseline MMSE
Thomas et al, 2001 ¹ Probable AD			6 months treatment with donepezil:	
donepezil treated (n = 20)	66.5	383 ± 3.4	-15 ± 1.7 p < 0.001	Mean: 16
Phase 1 ^{2,3} AD subjects (n = 11)	69.2	390 ± 14.8		Median: 20

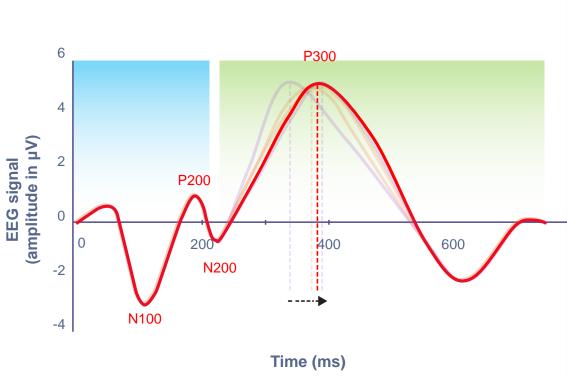
Diagram is illustrative and does not represent actual EEG data. Source: Athira Pharma, Inc.

AD, Alzheimer's disease; EEG, electroencephalogram; ERP, event-related potential; MMRM, mixed model for repeated measures; MMSE, Mini-Mental State Examination; SE, standard error.

^{2.} Hua X et al. J Alzheimer's Dis. 2022. DOI 10.3233/JAD-215511.

(n = 20) p < 0.001 8 days treatment with fosgonimeton:	Population	Age (years, mean)	Baseline P300 latency (msec, mean ± SE)	Δ in P300 latency from baseline (msec, mean ± SE)	Baseline MMSE
Phase 1 ^{2,3} AD subjects $(n = 11)$ 69.2 390 ± 14.8 -73 ± 18.4 Median: 20	Probable AD donepezil treated	66.5	383 ± 3.4	with donepezil: -15 ± 1.7	Mean: 16
	AD subjects	69.2	390 ± 14.8	fosgonimeton: -73 ± 18.4	Median: 20

^aMMRM analysis vs placebo


Diagram is illustrative and does not represent actual EEG data. Source: Athira Pharma, Inc.

AD, Alzheimer's disease; EEG, electroencephalogram; ERP, event-related potential; MMRM, mixed model for repeated measures; MMSE, Mini-Mental State Examination; SE, standard error.

^{1.} Thomas A, et al. Clinical Neuropharmacol. 2001;1:31-42.

^{2.} Hua X et al. J Alzheimer's Dis. 2022. DOI 10.3233/JAD-215511.

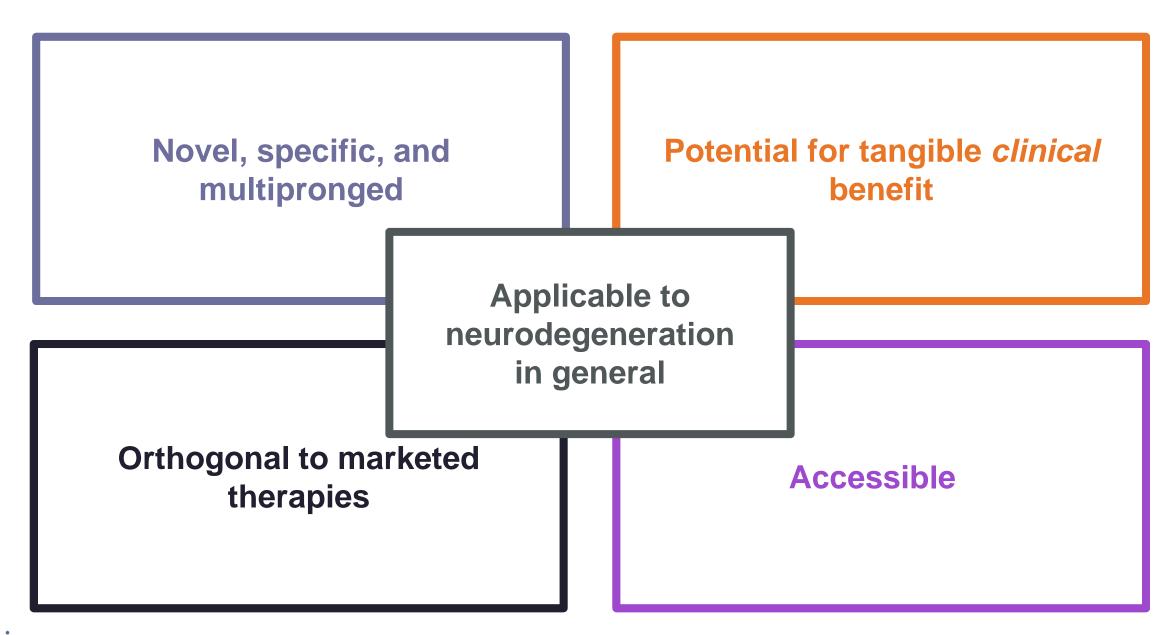
Baseline ERP P300 latency in the ACT-AD population

Population	Age (years, mean)	Baseline P300 latency (msec, mean ± SE)	Δ in P300 latency from baseline (msec, mean ± SE)	Baseline MMSE
Thomas et al, 2001 ¹ Probable AD donepezil treated (n = 20)	66.5	383 ± 3.4	6 months treatment with donepezil: -15 ± 1.7 p < 0.001	Mean: 16
Phase 1 ^{2,3} AD subjects (N = 11)	69.2	390 ± 14.8	8 days treatment with fosgonimeton: -73 ± 18.4 p = 0.027 ^a	Median: 20
(N = 77)	71.4	381 ± 4.1 ^b	Results available Q2 2022	Mean: 19

^aMMRM analysis vs placebo; ^bPreliminary.

Diagram is illustrative and does not represent actual EEG data. Source: Athira Pharma, Inc.

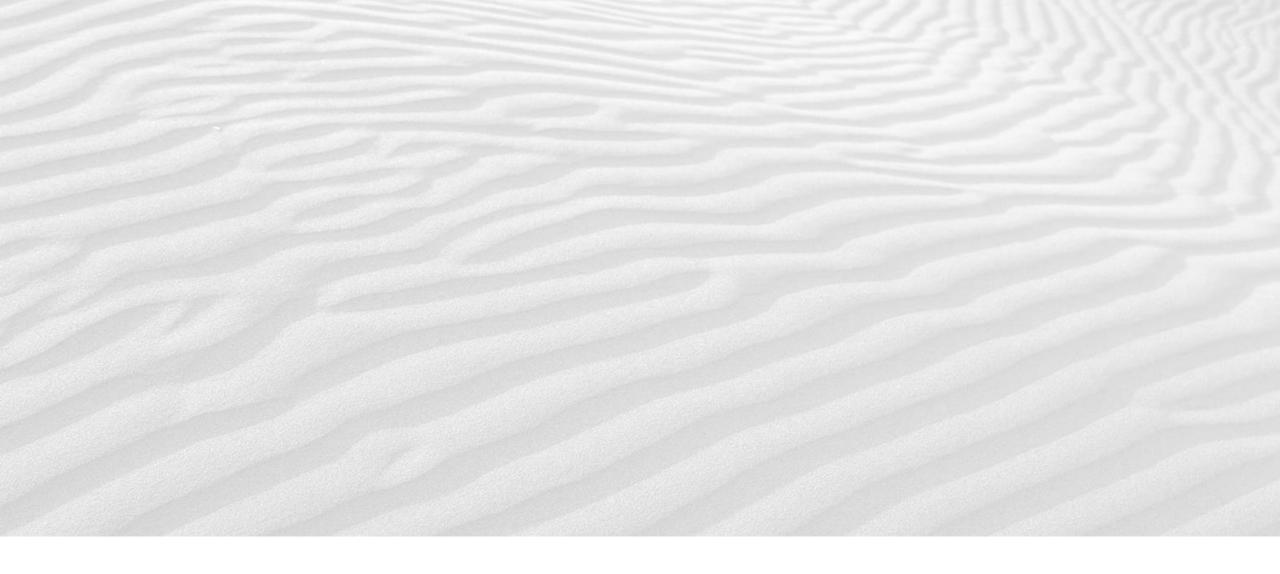
AD, Alzheimer's disease; EEG, electroencephalogram; ERP, event-related potential; MMRM, mixed model for repeated measures; MMSE, Mini-Mental State Examination; SE, standard error.


^{1.} Thomas A, et al. Clinical Neuropharmacol. 2001;1:31-42.

^{2.} Hua X et al. J Alzheimer's Dis. 2022. DOI 10.3233/JAD-215511.

ACT-AD: early termination rate

	Actad
Randomized (at data cut off)	77
Completed	57
Early termination (ET, rate %) Due to AEs Withdrawal Other/TBD	11 (14.3%) 7 (9.1%) 4 (5.2%) 0
TEAEs leading to study drug withdrawal/ET by primary system organ class General disorders and administration site conditions Injury, poisoning and procedural complications Nervous system disorders Blood and lymphatic system disorders Musculoskeletal and connective tissue disorders	(Out of 7 ETs due to AE) 4 0 2 0 1



Thank you!